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1. Introduction 

Scientific computing has provided insights and solutions for numerous classes of scientific and 
engineering problems.  Computational science, the techniques used to arrive at these solutions, 
requires effective use of computer hardware systems and algorithm development strategies.  
While these problems can often be computed on a single processor, most often the sheer 
complexity and size of the problem in question requires the use of parallel computer systems.  
One of the predominant uses of the many large-scale, parallel computer systems in use today is 
for the solution of problems in science and engineering.  Indeed, the performance of these 
systems is most often measured by its speed at solving mathematically oriented benchmark 
applications. 

While great strides have continually been made in hardware and parallel processing speed, 
software development for these applications remains problematic.  The focus on code execution 
speed combined with early formal language theory to create simple, easy to compile, function-
oriented design languages like FORTRAN 77.  These early languages had limited features and 
could generate machine code as efficient as the best hand-coded routines.  Since these early days, 
languages such as C and extensions to FORTRAN, including FORTRAN 90/95 and High 
Performance FORTRAN, continue to provide more robust functionality.  Today, C and 
FORTRAN remain the predominant languages of choice for scientific computing codes. 

However, these languages suffer common function-oriented design problems.  They do not 
provide for effective code reuse.  Most often, this requires copying and modifying code from an 
existing application to a new application.  This inevitably introduces unwanted side effects and 
buggy code.  It also means that the substantial effort already employed to produce viable, 
efficient code is limited to the current application only.  The lack of modularity is also a 
problem.  An operation on data in these codes can often be spread over multiple functions with 
no clear entry and exit point.  This data abstraction, the definition of new data types, and 
associated functionality is a crucial component that holds the key to resolving many of these 
problems.  It is no surprise that as the FORTRAN language has continued to evolve; this support 
has been incorporated into FORTRAN 90/95 (Ellis et al., 1994). 

Object-oriented design and the related object-oriented programming (OOP) is an approach 
widely offered in place of function-oriented design.  It is based on information hiding and 
focuses on the software system as a set of interconnected, interfacing objects (Sommerville, 
1989).  Information hiding forces the developments to be modular and allows for built-up 
systems of components.  This promotes software reuse and allows for selective optimization.  
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These concepts, however, have not been widely applied to scientific computing codes.  In this 
report, we focus on applying these techniques to the finite element method (FEM).  The FEM is 
a technique found in computational engineering that has been used in various serial and parallel 
codes.  

While the use of OOP is not widespread in computational engineering, it has been applied 
successfully in certain instances (Ford et al., 1990; Mackie, 1992; Sun and Marrero, 1998).  
Some parallel OOP formulations for the FEM have also been introduced (Modak and Sotelino, 
2002; Niekamp and Stein, 2002).  These developments focus our current research and extensions 
to make the approach more generic and robust.  The new toolkit described in this chapter is 
called SPOOCEFEM (Simple Parallel Object-Oriented Computing Environment for the Finite 
Element Method).  The framework has been designed to allow for extensive software reuse, 
describe common data file representations to promote interfacing with multidisciplinary codes 
and scientific visualization packages, and provide functionality on both single and 
multiprocessor architectures. 

2. SPOOCEFEM Goals and Implementation 

While there really is no easy way to iterate the goals behind a development effort (usually there 
are just too many), several in this case are worth noting.  The first design goal for SPOOCEFEM 
was that it be generic.  By providing a general OOP FEM framework, new application codes are 
spared the tedious and laborious effort required to replicate much of the functionality that is 
common across the various FEM codes.  For example, various finite element types are supported 
with associated routines, such as computation and storage of local coordinates. 

The second goal was that it be modular.  Base classes with well-defined interfaces are 
constructed first.  More complex objects, such as an FEM object, are composed of these base 
classes.  In a current application using SPOOCEFEM, this practice has allowed for the creation 
of complex classes using multiple inheritances with no requirements for revisiting the base code.  
This modularity, even to the level of the input and output data, has allowed it to be easily 
interfaced with existing scientific visualization codes.  The result is a solution built from well-
tested components complete with interfaces to complex scientific visualization libraries. 

Speed was the final goal in the development of the library.  This is an active research area for the 
SPOOCEFEM developers as the library is still being profiled and studied for performance.  Of 
primary note, however, is that the modularity of the design has allowed for a system where 
numerical solvers can easily be selected and changed according to the needs of a specific FEM 
application.  As with numerous scientific computing codes, the majority of the times we have 
seen in codes using SPOOCEFEM require the solution of linear systems of equations.  The 
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modularity of the developments foster speed by making these changes virtually effortless, as 
compared to the colossal effort required to change embedded solvers in functional programming 
codes.  Even if the runtime system required to support operator overloading and polymorphism 
incurs some overhead compared to historical codes such as those developed with FORTRAN, we 
feel the reduced time to solution in the development cycle is worth the slight increase in 
computer time. 

The language of choice for these developments is C++.  The authors have had success in porting 
the newly developed library using this standardized language coupled with the MPI libraries for 
parallel execution.  The current ports include the SGI Origin machines, Linux clusters, and the 
IBM SP3 and SP4.  It should be noted, however, that these benefits do come at a price.  The 
initial ramp-up time to a fully functioning SPOOCEFEM library was significant.  However, the 
authors are already taking advantage of the functionality provided by the library in quickly 
extending and developing new codes based on the FEM. 

3. SPOOCEFEM Structure 

An overview of the components from which SPOOCEFEM is constructed is shown in figure 1.  
Base components are shown at the bottom of the stack with each layer representing new or 
extended functionalities added to the layers below it.  As can be seen in the figure, the 
SPOOCEFEM environment encompasses and builds upon the functionalities found in numerous 
languages and libraries.  The blocks representing the linear algebra components (PETSc, 
PSPASES, BLAS, and LAPACK) are all optional.  FORTRAN 77 and FORTRAN 90 are 
optional and are only required for the use of PETSc and PSPASES, respectively. 

 

Figure 1.  SPOOCEFEM building block framework.

SPOOCEFEM 
Matrix and Vector 

Templates 
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The remainder of the report is devoted to a discussion of the integration of these various 
components and the functionalities found at the SPOOCEFEM layer.  In particular, this section 
includes discussions of the data format used in SPOOCEFEM, some of the classes available, and 
file converters for NASTRAN and PATRAN neutral files.  The work discussed here is 
applicable to serial or parallel FEM software development and is the framework around which 
new applications are built.  Parallel extensions are described in a later section. 

3.1 The FEM Data File Format 

The data format used in SPOOCEFEM is the eXtensible Data Model and Format (XDMF) for 
communication between interdisciplinary applications in the solution of multiphysics problems 
(Clarke and Naumburu, 2002).  This data format works well for the OOP approach because it is 
extensible and designed for storing data used/generated by computational software.  Although 
the XDMF format is defined for many types of computational applications, SPOOCEFEM only 
uses a subset for unstructured grid problems as encountered in the FEM. 

The data required by computational software are stored in XDMF as either “light” or “heavy”' 
data.  “Light” data are typically descriptive in nature and are used to store such information as 
the number of nodes in a mesh, the number of each type of element, and other small sets of 
information such as boundary conditions (BC) and material data.  Light data are stored in 
eXtensible Markup Language (XML) files for ease of parsing, writing, and dataset 
modifications.  “Heavy” data are typically large or static datasets required by FEM software such 
as element connectivity, node locations, and simulation results.  Heavy data are stored in 
Hierarchical Data Format version 5 (HDF5) files for access across architectures.  Having heavy 
data stored in binary files has many advantages including providing for random access to data 
when only a subset of a large dataset is required. 

An advantage of using the XDMF file format is that there are many graphical user interface 
(GUI) tools already available for visualizing the data.  These include the standard GUI in the 
interdisciplinary computing environment being developed by the U.S. Army Research 
Laboratory and its converters to EnSight and OpenDX formats.  By wrapping the SPOOCEFEM 
libraries with The Simplified Wrapper and Interface Generator, the Java and Python interfaces 
developed by these authors is also available for visualization of geometric and simulation results 
data.  Another advantage of using XDMF is that there are a growing number of scientific 
applications that use XDMF for input and output, making the problem-solving capabilities of 
these codes more accessible.  This capability is especially important when developing 
multiphysics software that requires modules from various developers with unique input/output 
requirements. 

The following snippet from a SPOOCEFEM data file is used as an illustrative example of the file 
format.  All of the tags between the SPOOCEFEM tags are recognized and processed by the 
SPOOCEFEM XML reader.  The parameters are defined by the PARAMETER tag and are 
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generic data holders.  The number of parameters is defined by the PARAMETERS tag.  This 
methodology is found often in the SPOOCEFEM XML file format as it is a logical description 
and facilitates the actions of the reader. 

 
<?xml version="1.0" ?> 
<SPOOCEFEM> 
  <PARAMETERS Number="2"> 
    <PARAMETER Name="TIMESTEP" Type="REAL" Value="0.5" /> 
    <PARAMETER Name="VISCOSITY" Type="REAL" Value="0.0" /> 
  </PARAMETERS> 
  <NODES Number="3715" 
    Location="box_3715.h5:/Geometry/Points/XYZ" 
    GlobalIndex="box_3715.h5:/Geometry/Points/GlobalIndex" 
  /> 
  <ELEMENTS Number="7286"> 
    <E2DTRI3 Number="7286"  
       
Connectivity="box_3715.h5:/Geometry/Elements/2dTri3/Connectivity" 
       GlobalIndex="box_3715.h5:/Geometry/Elements/2dTri3/GlobalIndex" 
       Thickness="box_3715.h5:/Geometry/Elements/2dTri3/Thickness" 
       Material="box_3715.h5:/Geometry/Elements/2dTri3/Material" 
    /> 
  </ELEMENTS> 
  <MATERIALS Number="1"> 
    <MATERIAL ID="0" NumberProperties="9"> 
       <PROPERTY Name="KXX" Type="REAL" Value="3.4e-5" /> 
       <PROPERTY Name="KXY" Type="REAL" Value="0.0" /> 
       <PROPERTY Name="KYY" Type="REAL" Value="3.4e-5" /> 
       <PROPERTY Name="IAXIS" Type="INTEGER" Value="3" /> 
       <PROPERTY Name="ANGLE" Type="REAL" Value="0.0" /> 
       <PROPERTY Name="VOF" Type="REAL" Value="0.19" /> 
       <PROPERTY Name="CONDUCTIVITY" Type="REAL" Value="0.0067" /> 
       <PROPERTY Name="DENSITY" Type="REAL" Value="2.56" /> 
       <PROPERTY Name="HEATCAPACITY" Type="REAL" Value="0.67" /> 
    </MATERIAL> 
  </MATERIALS> 
  <BCS Number="4"> 
    <BC ID="0" Location="1182" TypeName="BC_FLOWRATE" Value="1.234" /> 
    <BC ID="1" Location="1183" TypeName="BC_FLOWRATE" Value="1.234" /> 
    <BC ID="2" Location="1182" TypeName="IC_FILLFRAC" Value="1.0" /> 
    <BC ID="3" Location="1183" TypeName="IC_FILLFRAC" Value="1.0" /> 
  </BCS> 
</SPOOCEFEM> 
 
The NODES tag is parsed and interpreted by the FEMparser, whereas the ELEMENTS tag 
contains some application-specific data that are unrecognized by the FEMparser.  The NODES 
tag contains the global number of nodes, the location in the HDF5 file of the XYZ values, and 
the location of the global indices (also stored in a HDF5 file). The ELEMENTS tag contains the 
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global number of elements of all types with the number of the particular type specified in each 
tag below.  For example, this mesh is made entirely of 3-noded triangular elements so the 
number of E2DTRI3 elements is the same as the total number of ELEMENTS.  Each unique type 
of element contains the location of the elemental connectivities, global indices, and material 
numbers.  The elemental thickness values are later read by an application-specific parser and are 
stored in application-specific element types.   

The MATERIALS tag is parsed by the FEMparser and individual properties are stored by name.  
All properties listed with type REAL are stored as real values and all properties with type 
INTEGER are stored as integers by the use of a union in C++.  This is a powerful method 
because all materials for any application are already parsed by the FEMparser and stored 
according to their application-specific name.   

The boundary conditions and any initial conditions (IC) are listed inside of the BC tag.  ICs share 
many attributes with the BC class. Accordingly, it was decided that for parsing and data storage 
it was simpler to consider ICs as BCs and have each application define unique methods of 
application and other functionality.  For illustration, consider the fill fraction IC that requires a 
node location and real value for data storage.  This is exactly the same data required for the flow 
rate BC and therefore, except for the method of application, the IC and BC are to be stored in the 
same way. 

3.2 NASTRAN and PATRAN Neutral Format Parsers/Converters 

Parsers for reading geometric data from NASTRAN and PATRAN neutral files are included in 
the FEM class.  Currently, the converters support reading of geometric information and material 
numbers for many element types including triangles, quadrilaterals, and tetrahedrons.  For access 
to more information that may be contained in NASTRAN and PATRAN neutral files, such as 
BCs, it is simply a matter of creating a converter inside of the FEM class.  Having converters 
available for standard data formats and implemented inside of the FEM class provides for quick 
development of robust preprocessing routines that are sometimes neglected in favor of other 
application-specific routines in research applications. 

3.3 The Finite Element Class 

The hierarchy of the FEM class used is shown in figure 2.  This class contains all of the generic 
finite element functionality required for developing a complete application.  Some of the data 
includes BCs, material data, geometric information, and data file parsing utilities. The FEM class 
itself is a container class and is used to hold all of the FEM data and to perform utility functions 
for the stored data. 

There are many types of finite elements available in SPOOCEFEM and all inherit from the base 
Element class.  This class contains the lowest common data structures and functionality required 
of all elements.  The data stored in this class includes a pointer to the specified material and an 
Array with the connectivity list.  Inheriting from the Element class are the Element2d and
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Figure 2.  Hierarchy of the FEM object used by all applications. 

Element3d classes.  These are for two- and three-dimensional (2-D, 3-D) elements, respectively.  
At the moment, these classes do not contain any data of their own but are useful for 
differentiation between element types.  Inheriting from the Element2d class are the 
Element2dTri3 and the Element2dQuad4 classes for 3-noded triangles and 4-noded 
quadrilaterals, respectively.  These classes contain more specific information, such as the number 
of nodes in each element and the function for computation of the local coordinates.  At this time, 
the only 3-D element type is the Element3dTet4 class for 4-noded tetrahedrons.  These elements 
do not require local coordinate computations and therefore are only currently used for data 
storage. 

Boundary and initial conditions both inherit from the BC class and are stored in an FEM object 
as a linked list.  This method of storage allows for easy addition and removal of any IC or BC 
and is useful for preprocessing in a GUI.  The BC class itself only stores an integer that indicates 
the location of a BC or IC, and all functionality thereafter is defined by the specific type of BC or 
IC.  In the PressureBC class, the pressure value is stored as a real number and is interpreted as 
pressure on a node for COMPOSE but could just as easily be pressure on an element edge or face 
for 2-D and 3-D stress analysis, respectively.  The actual application of the BC is left to the 
application designer at this time, as it would be difficult to assume how a BC is used in each 
case. 

3.4 The Helper Classes 

There are many common data structures and algorithms that are useful in the FEM.  Some of 
these are included as separate classes and templates that are accessible to all objects.  These 
helper classes include an adjacency list, a list template, an array template, a binary tree, and an 
XML writer.
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The adjacency list is especially useful because it is used to compute the connectivity of the finite 
element mesh and then the sparsity pattern of the stiffness matrices.  The adjacency list is also 
useful for computing external nodes, or those nodes that are on the outside of a geometry, which 
will be used in several planned mesh optimization passes.  The XML writer provides 
functionality for creating indented, correct, and easy to read XML files.  Arrays are useful 
containers that enable runtime bounds checking for developmental and code testing revisions.  
Binary trees are used in several cases to provide O(log n) fast searches and for priority queue 
construction. 

4. SPOOCEFEM Parallel Extensions 

In this section, the software developments that pertain only to parallel finite element analysis are 
discussed.  The goal for SPOOCEFEM is to remove many of the hurdles and concerns for a 
developer of parallel finite element software.  To this end, the following classes and templates 
were created to alleviate the burden on the application developer. 

4.1 The Finite Element Class 

Parallelism in SPOOCEFEM is achieved by partitioning the problem domain.  That is, the finite 
element mesh is domain decomposed, where roughly equal-sized problems are assigned to 
various parallel processors.  The FEM class contains the functionality for partitioning an 
unstructured finite element mesh by nodes or elements by utilizing the graph partitioning tool 
(Karypis and Kumar, 1997).  The partitioning is accomplished at runtime so that any number of 
processors can be used with a simple command line option.  One advantage of this method over 
storing partition information in the data file is that a simulation can be executed in parallel 
without having to worry about whether or not the proper partition information is available.   

Once the partition numbers are known by the FEM object, the shared or ghost nodes are 
computed.  All of this is facilitated by the FEM object and therefore the application developer is 
relieved of this cumbersome task.  Generation of partitioning datasets and maintenance of the 
bookkeeping required for parallel computation are rather tedious and time-consuming operations.  
This integration of parallel bookkeeping into the FEM class allows for other optimizations, such 
as the minimization of communication between distant processors (Shires et al., 2002), to be 
applicable to all applications developed with SPOOCEFEM.  Optimization of the 
communication routines and the bookkeeping operations independent of any application code is 
possible because they have been encapsulated in the class. 

4.2 The Vector and Matrix Classes 

Typically, much of the time spent in FEM software is in the solution of the system of equations.  
This is the case in the Composite Manufacturing Process Simulation Environment (COMPOSE) 
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application that is built on SPOOCEFEM technology.  In this code, 80%–90% of the runtime is 
spent in the solution of the associated linear equations.  For this reason, great care has been taken 
to improve efficiency of the vector and matrix routines.  One of the novel approaches in 
SPOOCEFEM is the inclusion of multiple equation solver packages.  The Matrix and Vector 
template class interfaces provided by SPOOCEFEM ensure a consistent and transparent interface 
to all solvers.  These interfaces are implemented to provide maximum flexibility to the developer 
in choosing an optimal solution method. 

It has been shown in COMPOSE that for typical problem sizes (<1 106 nodes), a direct solver is 
often the preferred solution method (figure 3).  The linear system solved for the bar chart in 
figure 3 is taken from the COMPOSE software simulation of a part when the resin has infused 
95% of the mold.  At this point, the problem is much more difficult to solve because as the 
simulation progresses, the stiffness matrix contains more nonzero terms throughout.  In figure 3, 
PTC refers to solvers from PETSc (Balay et al., 2001), PSP is the PSPASES (Joshi et al., 1999) 
direct solver, COMPOSE (Law, 1985) is the current application solver, METIS refers to matrix 
partitioning performed by METIS, O3 and Ofast are compiler optimization levels defined by the 
SGI MIPS compiler, and cg or cr refers to conjugate gradient (CG) and conjugate residual 
solvers, respectively.  For example, the PTC.Metis.O3.cg bar refers to the system solution 
computed by PETSc, partitioned by METIS, compiled with O3 optimizations, while using the 
CG solver.  

For various problem sizes, it would be optimal to take advantage of the best solver for the 
situation, whether in a parallel or serial environment.  Therefore, the Matrix and Vector classes can 
store data in multiple formats including those used by PETSc, PSPASES, SPOOLES (Ashcroft  
et al., 2002), the Vectorized Sparse Solver (VSS) from the National Aeronautics and Space 
Administration Langley Research Center, and the solver currently used in COMPOSE.  The 
interface to all matrix objects is consistent, and the user is only required to decide during object 
instantiation which solver type(s) should be accessible to the matrix and vector object.  For 
example, in the nonisothermal COMPOSE software where symmetric and nonsymmetric systems 
of equations are to be solved, the stiffness matrix associated with the flow simulation may require 
PSPASES for the solution of the symmetric system of equations, whereas the thermal problem is 
nonsymmetric and therefore may have a stiffness matrix stored in the PETSc format for access to 
the Generalized Minimum Residual solver.  Once created, all of the interfaces to the matrices are 
consistent, and the storage details are hidden from the application.  There is some overhead 
associated with accessing the matrix data, but because so much time is required by the solution 
routines, this overhead is viewed as minimal (Norris et al., 2002). 

The matrix data for COMPOSE are stored in the Yale or Compressed Sparse Row (CSR) format.  
The stiffness matrix is partitioned by rows so that each process has a contiguous set of data.  This 
is the only information the user is required to be aware of for the generation of parallel FEM 
software in the SPOOCEFEM framework.  Once the problem is read and partitions generated 
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Figure 3.  Comparison of solution times for linear system of equations from COMPOSE. 

with METIS, the elemental stiffness matrices are generated and assembled into the global 
stiffness matrix stored according to the partition information.  The problem is then solved in 
parallel using the requested solver.  This description is for partitioning based on nodal domain 
decompositions.   

5. Application Development With the SPOOCEFEM Framework 

In this section, we describe the reimplementation of the FEM software COMPOSE in the 
SPOOCEFEM framework to improve software reuse and maintenance and to allow for the use of 
direct solvers.  COMPOSE was originally developed using a top-down functional design 
decomposition coded in FORTRAN 90.  Of primary concern, is the ultimate performance of the 
SPOOCEFEM version of COMPOSE compared with that of the original version.  The problem 
is first described mathematically and shown in discretized form.  Next, the application-specific 
code required for COMPOSE is discussed, and finally, performance of the parallel COMPOSE 
versions are compared. 

5.1 Problem Description 

The liquid composite molding process, namely the resin transfer molding (RTM) process, is used 
in many U.S. Department of Defense applications for the manufacture of composite components.  
Originally developed by Ngo et al. (1998) and Mohan et al. (1999), the implicit pure finite 
element mold filling formulation tracks the transient flow front of the resin in the fibrous 
preform for the manufacture of composite components.  A brief discussion of the governing 
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equations follows.  Starting from the continuity equation and using the methods described by 
Mohan, the following representation is derived: 

 0=Ω⋅∇Ψ+Ω
∂
Ψ∂

∫∫
ΩΩ

dud
t

v , (1) 

where Ψ is the fill fraction and µv  is the resin velocity.  Using Darcy's law, given as 

 PKu ∇⋅−=
µ

v , (2) 

to substitute for µv  in equation 1, the following is obtained: 

 Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅⋅∇Ψ=Ω

∂
Ψ∂

∫∫
ΩΩ

dPKd
t µ

, (3) 

where K  is the permeability tensor of the fibrous preform, µ is the resin viscosity, and P is 
pressure.  After applying the FEM the semi-discretized equation is given as 

 qKPC =+Ψ⋅ , (4) 
where 

 ∫
Ω

Ω= NdNC T , 

 ∫ Ω=
Ω

BdKBK T

µ
, 

 ∫
Γ

Γ⋅∇⋅= dnPKNq T v

µ
, 

and 

 
t

nn

∆
Ψ−Ψ

=Ψ +1& . (5) 

In equation 5, N is the elemental shape function and Β = ∇Ν.  Equation 4 is solved in the 
structured FEM software COMPOSE utilizing element-based domain decomposition. The same 
equation is solved with SPOOCEFEM with node-based domain decomposition; otherwise, 
everything else including element types (three-noded triangle, four-noded quadrilateral, and  
four-noded tetrahedral), the stiffness matrix storage format (CSR), and iterative CG-based 
solvers remain the same. 

5.2 Application-Specific FEM Code 

Some application-specific code for COMPOSE is required in order to use the SPOOCEFEM 
framework.  The bulk of the application-specific code is included in the various element types 
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used in COMPOSE.  For the 2.5-dimensional simulation code, there are two types of elements:  
three-noded triangles and four-noded quadrilaterals.  The three-noded triangular elements will be 
described in detail with the assumption that all developments are equally applicable to the  
four-noded quadrilateral element type.  The COMPOSE three-noded triangular element class is 
called ComposeElement2dTri3 and inherits from the Element2dTri3 class (figure 4).  From this 
inheritance, the ComposeElement2dTri3 class has access to storage of material data, 
connectivity, calculation of local coordinates, and reading and writing to XML and HDF5 files.  
The ComposeElement2dTri3 class expands this functionality with calculation of the elemental 
stiffness matrix for resin flow in the RTM process.  Some other application functionality was 
discovered to be the same for all 2-D element types in COMPOSE, and so a ComposeElement2d 
class was created to handle calculation of the local permeability’s, the lumped mass matrix, and 
storage of the elemental thickness.  The storage and retrieval of viscosity information is required 
of 2-D and 3-D element types in COMPOSE and so one more class was created for this purpose:  
ComposeElement.  The inheritance diagram for the ComposeElement2dTri3 class is shown in 
figure 4 and shows visually the multiple inheritances required for this level of abstraction. 

 

A

A A

A
A

inherits, is a

abstract class
Element

Element2d

ComposeElement

ComposeElement2d

Element2dTri3

ComposeElement2dTri3

 

Figure 4.  Hierarchy of the ComposeElement2dTri3 class showing multiple inheritances. 

The BCs required for an isothermal COMPOSE simulation are either pressure at a node 
(Dirichlet) or flow rate at a node (Neumann).  These two BC types have already been included in 
the SPOOCEFEM framework and therefore no extensions are required.  The application of 
Dirichlet BCs is handled by the MatrixCSR class for serial and parallel matrices.  The Neumann 
BC is set by the application by modification of the right hand side vector value; in COMPOSE, 
the vector is the right hand side of equation 4, namely q.  Data files in COMPOSE are parsed by 
the generic SPOOCEFEM parser with a new attribute for the thickness of 2-D element types.  
The COMPOSE parser implements very few new routines as a majority of the required routines 
are provided in the FEM parser through inheritance.
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The final class created for COMPOSE is the ComposeFEM class that contains all of the routines 
required to execute a COMPOSE simulation.  These routines include the time-stepping and 
mass-convergence routines.  Two advantages of putting all of this functionality into the 
ComposeFEM class is that the algorithm used for 2-D and 3-D analysis and serial and parallel 
simulations is the same, only the data storage is different.  The addition of new element types 
and performance enhancements are mostly external to this part of the application and so 
upgrades are simple and accomplished by replacing the old shared libraries with new ones or 
recompiling and linking with static ones.  The addition of other enhancements, such as the “One 
Shot” (Voller, 1996) fill-time computation routine and sensitivity analysis (Henz et al., 2002), is 
accomplished for all isothermal COMPOSE simulations with one version of the algorithm.  In 
the past, the “One Shot” algorithm required modification of the serial and parallel versions of the 
COMPOSE code base; but with the object-oriented code-base, the new routines work for all 
types of analysis possible within COMPOSE. 

5.3 Performance Comparison Between Structured and OOP-Based COMPOSE Software 

Extensive performance testing and code enhancements have been performed on the structured 
COMPOSE code (Mohan et al., 1998; Shires, 2001a, 2001b).  It is against this software that the 
current OOP developments are compared.  Simulation results are presented here for the 
SPOOCEFEM-based COMPOSE software with the direct PSPASES solver and the iterative CG 
solver from PETSc.  The simulation time is the time required for COMPOSE to simulate 
complete mold filling in a complex geometry with a large number of nodes.  The speedup results 
are scaled to assume perfect speedup with eight processors.  Empirical evidence, based on 
numerous simulation runs, seems to indicate that at this number of processors, the problem 
decomposition is of a size that maps better to cache and local memory.  The times for the 
425,156 node simulation are also presented for 8 processors, but the problem is somewhat larger, 
and superlinear speedup is observed between 8 and 16 processors.   

In a complete filling simulation, it is observed in table 1 that for eight processors, the PSPASES-
based software outperforms the original COMPOSE software by a factor of approximately 2.  
This increase in performance is encouraging, and performance enhancements in SPOOCEFEM 
will continue to increase this lead.  The PETSc-based code is approximately 6 times slower than 
the original COMPOSE software, but this can be partially explained by the overhead incurred in 
the various routines within COMPOSE, besides the linear solver.  During a time step of mold 
filling, the stiffness matrix is modified many times, and this modification has a large amount of 
overhead associated with it in PETSc.  This point is being worked on diligently and will 
hopefully be alleviated in future versions of SPOOCEFEM.  One point to make here is that the 
solutions obtained from the PSPASES- and PETSc-based parallel simulations match the serial 
solution with VSS to machine accuracy, but the original solver in COMPOSE has a noticeable error 
associated with it.  This would mean that the results obtained from the SPOOCEFEM version of 
COMPOSE are much more reliable and therefore a small loss in performance is not an issue if results 
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are more accurate.  Tables 2 and 4 show speedup results for the 105,722 and 425,156 node RTM 
simulations, respectively.  These results show that the PSPASES solver is not as scalable as either the 
PETSc or COMPOSE solvers, but up to 64 processors it still requires less run time. 

Table 1.  Simulation time in seconds for 105,722 node 
RTM simulation. 

No. CPUs PSPASES PETSc COMPOSE 
8 7070 97973 14945 

16 5362 38261 8944 
32 4439 19143 5742 
64 4891 11841 5856 

Table 2.  Speedup results for 105,722 node RTM simulation, assuming perfect 
speedup at eight processors. 

No. CPUs PSPASES PETSc COMPOSE 
8 8.000 8.000 8.000 

16 10.548 20.485 13.368 
32 12.743 40.944 20.822 
64 11.565 66.192 20.417 

 
Some quick notes about implementation are required at this point.  First and foremost, it must be 
noted that the structured version of COMPOSE uses element-based domain decomposition, 
whereas SPOOCEFEM currently only supports node-based domain decomposition.  This is 
important because in the formation of the stiffness matrices within SPOOCEFEM COMPOSE 
for the individual processes, some redundant computation is required for elements contained in 
multiple partitions.  Second, the preconditioned conjugate gradient solver used by the structured 
code computes the residual slightly differently than the OOP-based code so that the number of 
iterations changes as the number of domains changes in the structured code but stays 
approximately constant in the OOP-based code.   

Tables 5 and 6 show simulation-timing results for the same geometries as those in tables 1 and 3, 
respectively.  The difference from the previous results is that the full range of material 
properties, specifically the fiber permeability tensors, is used in tables 5 and 6.  In order to obtain 
accurate results from the iterative solvers, it was decided that for timings in tables 1 and 3, a 
simplified set of fiber permeability tensors would be used to ensure a well-formed problem.  In 
real world situations though, the permeability varies widely across a composite component and 
these numbers affect the condition of the problem solved in the FEM software.  Tables 5 and 6 
show that the PSPASES direct solver is unaffected by the condition of the problem, whereas the 
structured COMPOSE solver requires more time to obtain accurate results from the less well-
conditioned problem.  In figures 5a and 5b, the increase in simulation time for the PSPASES-
based software is due to the fact that more mass convergence iterations are required for each time 
step.  The increase in time for the original version of COMPOSE is due to more mass-
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Table 3.  Simulation time in seconds for 425,156 node RTM 
simulation. 

No. CPUs PSPASES PETSc COMPOSE 
8 25405 N/A 123113 

16 22578 N/A 59865 
32 17300 141043 26426 
64 11554 63582 16049 

Table 4.  Speedup results for 425,156 node RTM 
simulation, assuming perfect speedup at eight 
processors. 

No. CPUs PSPASES PETSc COMPOSE 
8 8.000 N/A 8.000 

16 9.002 N/A 16.452 
32 11.748 N/A 37.270 
64 17.591 N/A 61.369 

Table 5.  Simulation time in seconds for 
105,722 node RTM simulation with 
full range of material properties. 

No. CPUs PSPASES COMPOSE 
8 7165 36299 

16 5433 20873 
32 4520 13967 
64 4891 11652 

Table 6.  Simulation time in seconds for 
425,156 node RTM simulation with 
full range of material properties. 

No. CPUs PSPASES COMPOSE 
8 31574 327502 

16 27137 157100 
32 24034 72669 
64 13878 45303 

 
 
convergence iterations and more iterations in the linear equation solver, thus making the 
percentage of time increase greater than that for the PSPASES-based software.  This is an 
important point to highlight because choosing a direct or iterative solver in SPOOCEFEM is as 
easy as changing one variable in the call to the solve routine in the Vector class, whereas adding 
a new solver to the structured COMPOSE software would require rewriting many routines and 
changes to a large portion of the application code. 
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(a) Plot of solution times for PSPASES and COMPOSE 

solvers with 105,722 nodes for single and multiple 
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Figure 5.  Results of PSPASES vs. COMPOSE comparison. 
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6. Conclusions 

The SPOOCEFEM framework discussed in this report has demonstrated its usefulness in the 
development of parallel FEM software.  The ease of development, software reuse, and the GUI 
tools are all advantages of using SPOOCEFEM.  As with other OOP designs, the SPOOCEFEM 
framework required a higher investment in time and thought vs. functional programming 
approaches.  After SPOOCEFEM was developed though, implementation of the application 
COMPOSE was swift and required little additional code.  Much of the functionality available in 
C++ is used to make developing FEM applications simpler, but making the base FEM 
development complex.  An example of the extensive OOP work is the use of multiple inheritance 
by COMPOSE in the development of the element classes.  Another example is the use of 
polymorphism in the element and BC classes, making extensions by individual applications 
efficient.  The greatest complexity comes from the Vector and Matrix classes, where various 
combinations of data and parallel algorithms are located, but accessed through a consistent 
interface.  This complexity is warranted though, as now the application developer is relieved of 
the task of changing solver calls and data storage to accommodate various new packages or 
solvers. 

7. Future Development 

The original impetus to develop SPOOCEFEM was the current work of extending COMPOSE to 
model the nonisothermal resin flow and cure kinetics in RTM with parallel computers.  Because 
much work would have gone into parallelizing the current serial code with little usable source 
code for future projects, it was decided to create a reusable framework for FEM software 
development.  Now that the isothermal version of COMPOSE is implemented in the 
SPOOCEFEM framework, the job of creating the parallel nonisothermal COMPOSE software is 
much easier and will be available for other projects yet to come.  Other sparse matrix formats 
besides CSR will be added to SPOOCEFEM in the future along with the associated equation 
solvers.  Element-based domain decomposition requires refinement in SPOOCEFEM so that 
applications can take advantage of it. 
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